MATH 54 - MOCK MIDTERM 1

PEYAM RYAN TABRIZIAN

Name: _____

Instructions: This is a mock midterm, designed to give you extra practice for the actual midterm. Good luck!!!

1	25
2	15
3	20
4	10
5	10
6	10
7	10
Total	100

Date: Monday, September 12th, 2011.

1. (25 points, 5 pts each)

Label the following statements as **T** or **F**.

Make sure to **JUSTIFY YOUR ANSWERS!!!** You may use any facts from the book or from lecture.

(a) If A and B are square matrices, then $(A+B)^{-1} = A^{-1} + B^{-1}$.

(b) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a one-to-one linear transformation, then T is also onto.

2

(c) If $\{v_1, v_2, v_3\}$ are linearly independent vectors in \mathbb{R}^n , then $\{v_1, v_2\}$ is linearly independent as well!

(d) If A is an invertible square matrix, then $(A^T)^{-1} = (A^{-1})^T$

PEYAM RYAN TABRIZIAN

(e) If A is a 3×3 matrix with two pivot positions, then the equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.

2. (15 points) Solve the following system (or say it has no solutions):

$$\begin{cases} x + y + z = 0\\ 2x + 2z = 0\\ 3x + y + 3z = 0 \end{cases}$$

3. (20 points) Find the inverse of the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

4. (10 points) What's the next elementary row operation you would use to transform the following matrix in row-echelon form? What is the corresponding elementary matrix?

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 1 \end{bmatrix}$$

PEYAM RYAN TABRIZIAN

- 5. (10 points, 5 points each) Evaluate the following products if they are defined, or say 'undefined'
 - (a) AB, where:

$$A = \begin{bmatrix} 2 & 5\\ 0 & 7\\ -1 & 3 \end{bmatrix}, B = \begin{bmatrix} 1\\ 0 \end{bmatrix}$$

(b) AB, where:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

8

- 6. (10 points) Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation which reflects points in the plane about the origin.
 - (a) (5 points) Find the matrix A of T.

(b) (5 points) Use A to find T(1, 1).

7. (10 points) Find a basis for Nul(A) and Col(A), where A is the following matrix:

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & -1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

10